
ATR0%82

DEVELOPMENT OF A SYSTE M TO

INVERT EDDY-CURF'ENT DATA
AND RECONSTRUCT FLAWS

Harold A. Sabbagh
L. David Sabbagh
Analytics, Inc.
2634 Round Hill Lane
Bloomington, IN 47401

18 Juno 1982

FINAL REPORT N

Contract No.

N60921-81-C-O30 2

Distribution Unlimited:
Approved for Public Release

Prepared for
LU
__j

NAVAL SURFACE WE,ý ONS %C"ENTER [CODE R341

White Oak Labs

Silver Spring, M 01

82 8 27 030



..IINIASSTFTFfQ .
SECU(lITY CL) tSIrrCATION OF THIS PAGE ("7oon 0-a_ Entered)

REPORT DOCUMENTATION PAGE BEFORE COMPLERING FORM1.OR ROMPORTN NUMBER,. REPORT NUM2ER Ia. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMdER I
2-82 !9.1  1 i. TYP OO

4. TITLE •,nd SubtItl) S. T RPE OF RPORT & PEOD COVERED

DEVELOPMENT OF A SYSTEM TO INVERT EDDY-CUJRRENT
DATA AND RECONSTRUCT FLAWS FINAL RFPflRT

7 eO O 6. PERFORMING ORU. REPOR7 NUMBER

7.AUTHOR'*) 6i, CONT"RACT OR GRANT NUMSIEN(a)HaodA abg

Harold A. Sabbagh
L. David Sabbagh N609?1-81-C-0302

9. PERFORMING ORGANIZATION NAME AND ADORESS 10. PROGRAM ELEMENT, PROJECT, TASK

Analytics, Inc. AREA & WORK UNIT NUMBERS i

2634 Round Hill Lane 62761N, SF61-544, KBloomington, IN 47401 I SF61-544-508, 11R348C ••

CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Naval Surface Weapons Center (Code R34) 18 June 1982
White Oak Labs 13. NUMBER OF PAGES

Silver Spring, MD 20910 46
14. MCNITORING AGENCY NAME & ADDRESS(IJ different frcm rontroillng Office) IS. SM;CURITY CLASS. (of thti report)

Unclassified
i• 15. DZCLAS_;II ,CATI ON/ DOWNGRADING

SCHEDULr

16. DISTRIBUTIOP STATEMENT (of tihl Report)

Distribution Unlimited: Approved for Public Release

17. DISTRIBUTION STATEMENT (of the abatract entered In Block 20, It different from Report)

I i-
IS. SUFPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse aide if neceeewry and identify by block mxeberl

Eddy-currents Linear and nonlinear least-squares
Nondestructive evaluation LINPACK/MINPACK
Numeric4l inversion Integral equations
Flaw reconstruction Method of moments |

20. ABSTRACT (Continue on reveree side It necesesay end identify by block nLuber)

Starting frcm rigorous electromagnetic theory, a model for the inversion I
of eddy-current data to reconstruct flaws in circular cylindrical tubes
is developed. The form of the model consists of integral equations, whose
kernels (Green's functions) are computed using Fourier transforms. The
unknowns in the principal integral equation are tie conductivity andla electric field in the flawed region. Because these unknowns appearmultiplied together, the problem is really nonlinear. The integral -)cc

1473 EOITION OF I NOV 65 IS OBSOLETE
DDO IFORA 73 17

S/. 0102oLF-o14.6601 UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Daea Bn•t•ed)



UNCLASSTFTED I
SECURITY CLASSIFICATION OF THIS PAGE ("ohn Data Entered)

equations are converted to algebraic (vector-matrix) form by means of the
method of moments. The inversion prccess is completed by applying linear
and nonlinear least-squares algorithms, that are contained in the
commercially available LINPACK!MINPACK software packages, to these algebraic
equations. Using these algorithms in the model, we have reconstructed
numerically-generated flaws with great accuracy, both.when the flaws are

" "deterministic" and "random", the latter with data that has been perturbed
by as much as 20%. Examples of these inversions, using both the linear
and nonlinear algorithms, are presented. In addition, the model can be
extended in a straightforwdrd way to include the effects of known
irregularities, such as tube supports or tube-flaring, on the
reconstruction of flaws.

N. J

Ej

i l~i~t iSPcL40al ,•

-! I

I I
UNCLASSIFIED

SECURITY CLASSIFICATION OF-THIS PAGE(Uhen Vats 0I1,t00

___



II

F,
I. INTRODUCTION

- Eddy-current testing was first systematically studied in Germany

S[during World War II, but did not receive wide recognition until Forster

r and his colleagues pub...ished the results of their extensive theoretical,

experimental and industrial investigations between 1952 and 1954 [1].

These papers did not include a quantitative theory for flaw detection,

however, and it was not until 1964 that Burrows constructed such a

theory in his dissertation [2]. His idea, which was based on electro-

magnetic theory, is to replace the flaw by an equivalent dipole, and is

reasonable if the flaw is small compared with the skin depth (sometimes

called the diffusion length) of the eddy-currents.

The work of Dodd, et al. [3-51 brought eddy-current nondestructive

evaluation (NDE) "of age" by showing how one could get useful analytical

results based on a rigorous application of electromagnetic theory.

Their theory of flaw detection contains Burrows' and is subject to the

same limitations of dipole representation. Equally significant with

their use of rigorous electromagnetic theory, in our opinion, is their I

development of computer programs to compute the integral representations

of the electromagnetic fields [6-7]. Now the modern era of eddy-current

inspection is upon us, based on the union of numerical methods in

mathematics and rigorous electromagnetic theory.

As further evidence of this, we cite the extensive research sup,

ported by the Electric Power Research Institute (EPRI) [8], in par-

ticular the work of W. Lord, of Colorado State University, B. A. Auld,

of Stanford University, and A. N. Mucciardi, of Adaptronics, Inc.

Lord is developing a finite element model for eddy-current nondestruc-

tive testing phenomena, whereas Auld is using the reciprocity theorem

of electromagnetics to quantitatively model flaw responses in -ddy-

current testing. Finally, flucciardi is developing a system for flaw

detection and classification by using an adaptive learning network for

eddy-current signal analysis. I
In this report we describe an approach to the reconstruction of

flaws, not merely their detection. This will give us the ability to
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obtain much more information about the nature of the flaw, unimpeded by

the size restriction of the dipolar approximati.:n that was mentioned

above. By "flaw" we mea,. virtually any departure of the medium from a

standard condition, which is known a priori, such as may be produced not

only by a crack but also by conductivity inhomogeneities produced by

stresses, magnetite build-up, etc. Our approach is very much in the
spirit of contemporary work in inve-:se methods in electromagnetiLe [9-

11] and electromagnetic-geophysical prospecting [12-19].

At this point we introduc= some systems-related ideas that should

make clearer the way our concept of inversion is to be used for non-

destructive evaluation. Refer to Figure 1, which shows a "system,"

together with its input and output. In part (a) of the figure the input

is known and so is the system, and the output is to be determined. This

is the "forward" or "direct" problem. For example, the input could be a

current or voltage source, and the system, a coil coupled to the work-

piece. The output, the magnetic vector potential or induced eddy-

current within the workpiece, can be directly computed in a straight-

forward manner by electromagnetic theory.

in part (b) the system and output are known, ani the input is to

be determined. This is a problem of communication theory, or signal

detection. One assumes a catalog of possible input signals to be avail-

able, whose structure and characteristics are known a priori; from the

known output one estimates the input signal on the basis of the maximum

a posteriori probability of its occurrence. This is the basis of Adap-

Stronics' flaw detection system. Their inj,,t data base (the catalog of

possible input signals) consists of 506 defect waveforms under tube

supports and 261 isolated defect waveforms, all of which are at 400 kHz.

This is an example of another "forward" method, and appears to be

sufficient for many applications. It is, however, limited by both the

large volume of signal waveforms that must be catalogued for a suitable

gereralized interpretation and by the subjective comparisons made by the

interpreter. The method also gives little indication of the sensitivity

of the solution to possible errors in the data and the degree of non-

uniqueness associated with the chosen mode.

2



In Figure l(c) both the input and output are known and the system

is unknown. The input could be a known "probing" signal, and the out-

put, the measured response to the probe. The object is to determine the

nature of the system. This is an example of "system identification" or

"parameter estimation," where "parameter" refers to certain parameters

of the unkown system. In the sense that problems (a) and (b) are

"direct," problem (c) is the "indirect" or "inverse" problem, and is the

problem discussed in this report. What one seeks in this problem is a

model-system that, when operating on the input, produces a "mode.z-

output" that is, in some sense, an optimum estimation of the known output.

There are two common ways of obtaining a sufficient amount of inde-

pendent data to estimate parameters in eddy-current testing: (a) through

the use of multiple coils, and (b) through the use of multiple fre-|
quencies, including pulses or transient signals [20]. Of course a com-

bination of the two ma:, be used. In this report we consider only the

multiple coil method.

In Figure 2 we show a system of coaxial coils within a tube that is

to be inspected. Within the wall of the tube is located an anomalous

region (the "flaw") that we wish to reconstruct. A mathemetical mesh

is defined that surrounds the anomaly, as shown. The properties of the
mesh, such as its location, size, and fineness, are known to us. What

we don't know are the values of the electrical conductivity to assign to

each rectan•gle of the mesh. The "system," then, consists of the coils,

the tube, and the mesh that encloses the anomalous region. e unknown

parameter. that are to be estimated in order that the system be "iden-
tified," in the sense of Figure l(c) and its discussion, are the conduc-

tivities that are to be assigned to each rectangle of the mesh. The

known input is the current to the exciting coil, and the known outputs

are the voltages induced into the sensing coils. Clearly, if we can

determine the conductivity map that is defined on the mesh, we will have

reconstructed the anomalous region.

The method of solving this problem is based on minimizing the

square of the error between the actual measured data and that produced

by the model-system, the model-output (this error is often called the

3
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residual). The parameters that are varied to produce the optimum model,

in the least-squares sense, are, of course, the conductivities that are

assigned to each cell in the mesh of Figure 2.

7%hus, matheratically, we wish to determine a set of unknown para-

meters 0. j=l, ... ,M, where M is che number of cells in the mesh,

from a set of data, ei, i=l, ... N, where ei are the voltages induced

Ra into the Nsensing coils. The e. are functionally related to the G. in1 M

residual) The; paramtrs thtaevre topdue hepimmoel

e 2 = 2(, • E M

t

S' N f ( o il , •. . , M )

Hence, given the s s we can calculate the e d by treaiving this as a

"forward" problem, in the sense of Figure l(a). The equations (1) that

define the forward problem are determined by using electromagnetic theora .
But ie is the voltages, eM1, that are the given data, so we muse

invert ahe system, (e), to determine the r.. We do this by minimizing

ithe error function

S • "N 2]1/22F(.1 , CF E (e f (2)

| •Iterative methodse are commonly used to carry out the minimization

i •of (2). The iterative method successively improves a current model,
i.e., a current estimate of the a., until the error measure, (2), is

G1 4 )

smlHence given prether a. e cantablcuae w the re.pe by toreasingbthishasgea

""forwardh probleml.h es fFgr (a.Teeutos()ta

2 availabhe ilrro ofsunc ion l ueia loihs o ar n u h
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least-squares solution of (1). Any algorithm chosen irnt contend with

the fact that the problem as posed in (1) and (2) is generally quite

ill-conditioned, which means that small variations in input data can

produce quite large vaziations in the solution. The commercially avail-

able FORTRAN packages. LINPACK (211 and MINPACK [22], contain well-
JAI

written codes for least-squares alogrithms, and these codes served as

the basis of the numerical experiments to be described in this report.

LINPACK consists of linear equation-solving algorithms, and M!NPACK

contains nonlinear least-squares algorithms. A description of these

algorithms will be given in a later section of this report.

These experiments indicate that the inversion method works quite

well on simulated flaws, even when the data is corrupted by as much as

20%; this is quite important in applications. Another nice feature is

that once the nonlinear inversion -. gorithm has converged, it is possible,

using the techniques of linear inverse theory, to assess the errors and

resolution in the estimate of the final model. The objective is to

determine which features of the model are well-resolved and important

to the interpretation of the data and which features are irrelevant,

in the sense that the data neither support nor reject their inclusion inI the model. This is also quite useful in eddy-current NDE.

II. DERIVATION OF THE MODEL SYSTEM

(a) Integral Equations

The detection of flaws, or anomalies, by means of eddy-currents de-

pends upon the fact that flaws are not electrically conducting and that

the eddy-current flow is interrupted at the boundary of the flaw. The

flaw, therefore, can be considered to be an inhomogeneity, which consists

of a conductivity, af, that is imbedded in a region whose conductivity,

OW is known a priori. The dielectric constant and magnetic permeability

of each region are those of free space, e and p0" Hence, Maxwell's

~ iequations for the two regions are:

A ~



V x E0  -jW11 0 H (Known Region) (3)(a)

V x H (a0 + j(0)E

V x =-1 (Flawed Region) (3)(b)

x t(a + j i)E

SUpon subtracting (3)(b) from (3)(a), we get

i V ~x (E0 -E)="0(R0- f

Sx (0-f) 0(O-E)+ JweoE - Ef + (G0-OfE (4)

.e have added -nd subtracted a0E to get the final form.

Thus, the perturbation of the electromagnetic field, E - Ef'

R RV satisfies the s~me equation as the original electromagnetic

field within the known region, except for the presence of the term
(a0 - Gf)E. This term, which is equivalent to a current source, Ja

zepresents the presence of the anomalous region, or rlaw. It is impor-

tant to note that 5 vanishes off of _he flaw, because there f= a0
in the usual way we can derive a vector wave equation for E - Ef

from f:

' V x V x (E - = -jWP0 V x (H - Hf)

2
- (W o J~ o 0)(E' -f) - jWloC 0 ( af)Ef (5)

By treating the last term in (5) as a source, we can immediately

write down a foormal solution fcr the perturbed field E - E0 fl
(E0 -f)(r) = *j*0 If fG ')r * E ff(r')( f -f ')da' (6)

Flaw

6
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where T(rjr') is the dyadic Green's function for the known region [231,

and the volume of integration is the flawed region, for which a-

# 0. This equation is the basis for our inversion technique. Before

going further with it, we make the following observations which will

allow us to reduce the problem to a scalar system.

In eddy-current NDE work, we don't measure perturbed fields di-

t.ctly; rather, Lne per~urbucd EMF that is induced in a probe coil is

measured. Such an EMF is given by the line integral of (6) aioig the

probe coil windings. In the system that we are investigating, as

shown in Figure 2, the EMF is the line integral of the azimuthal elec-

tric field, E (in the usual cylindr 4 cal coordinate system, wherein the

z-axis coincides with the axis of the tube). Hence, all we need to

coný,ider is that single component of :he E vector. In addition, we can

ignore any 4-variations of EV, because the line integral is taken over

27 radians/turn of the probe coil. Therefore, if we expand E in a

Fourier series, {cos n4}, then only the n=0 term will contribute a non-
zero value to the EMF integral. But if E is independent of 0, then the

E vector field (which, by assumption, consists of only the 0-component)

is divergenceless. This is equivalent to saying that the Green's function
of (6) is the electric field that is produced by a circular filament of

current, of radius r', located at the plane z=z'. In addition, we can

also take the "anomalous current," J , to be wholly Jn the O-direction,
a

and divergenceless.

Thus, we can reduce (6) to the scalar equation

(E0 - Ef)(rz) =-jWu0 G(r,z;r',z')E(r',z')
Flaw

-0 a f)(r',z')r'dr'dz' (7)

where E0 , Eft and G are the O-components of their respective fields. The

gist of the preceding argument is that, by using coils, as shown in

Figure 2, we are unable to determine the azimuthal location or extent of

the flaw. In carrying out the integral over 0 in (6), thereby transforming

7
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it into the two-dimensional integral, (7), we assume that the flaw is

confined to the plane ý=O. TaLis means that the flaw has the functional J

dependence

0- f )(r,z,4) 6(t)(a 0 - Of)(r,z)

in oLder to further dpvelop the model, we must take into account

that the region of interest consists of three parts: the interior of

"the tube, the tube wall, and the region exterior to the tube. We call

these regions 1, 2, 3, respectively, and introduce the following nota-

tion for the Green's function:

G (r,z,;r',z') = Field produced at (r,z) in region i,

due to filamentary current loop at (r':z')

in region j

G ji(r z ;r,z),. i,j 1,2,3

The last equation, a reciprocity relation, follows because the mag-

netic permeability of all three regions is the same (this, and other
j matters relating to Green's functions in stratified media, can be found

in [231).

We introduce the following notation

Ei 2 (r,z) Electric field in region 1 or 2, with flaw present

E0(r,z) Electric field with flaw absent, due to exciting coil.

Then (7) produces the following basic integral equation for computing

E in the flawed region, which is in region 2:

f
E2(r,z) + jwp 0 0 Jj G2 2(r,z;r t,z')E2 (r',z)(=(r',z') - l)r'dr'dz'( u0

Flaw 0

E0 (r,z) (8)I0
A8

S 
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In addition, we have the integral relation for computing the perturbed

electric field at the probe coil (which lies within region 1):

(E 0 - El)(r,z) =jWJ 0 %0 Gl2 (r,z;r',z')E 2 (r',z')

I Flaw

of

When this equation is integrated over the probe coil we get the per-

turbed EMF. If we assume that the probe coil is uniformly and densely

wound with n turns per unit area (ir the r-z plane), we get for thisc

EMF:

EMF = -27rn JJ (E 0 - El)rdrdz (10)

Probe Coil

Finally, the electric field, EB, that is produced by the exciting

coil is given by

E0 (r2z) = GJI021 TfG 21 (rz;rz')J 0 (r 'z )r'dr'dz'
° 'k Ex citing

Coil

=-JW027rne I [ G21(r' z; r'z')r' dr' dz' (i

0 eO0 f 21
Exciting

Coil

where J is the exciting coil current density, ne is th density of turns

in the exciting coil, and I0 is the current carried by the exciting coil.

Equations (8)-(11) constitute the model system. The algorithm for

using the system consists of first computing the incident field, E0 , at

the flaw, by (11); this is the right-hand side of (8). For a given dis-
tribution of flaw conductivity, af(rz), (8) can be solved numerically.

if
Its solution, the electric field, E2 , in the flawed region is the source

term for (9), which produces the perturbed electric field at the probe

IL =
C

1=



coil in region 1. The integral of the perturbed electric field produces

the perturbed EHF, (10), which is then compared with the measured EMF

to determine if the assumed flaw conductivity, Of(r,z), is "close" to the

actual (though unknown) flaw conductivity. The problem is really non-
linear because (8) involves the product of two unknowns, (f(r,z) and

S• E2 (r,z). Thus, some form of iteration is required, in which one starts

with an assumed distribution for of (r,z), and then hopes to converge to

a final acceptable value.

The model that we have developed is quite general. Crucial its

application as a reconstruction technique is the ability to compute the

Green's function of the "known" region, i.e., the region that exists in

the absence of any flaws. When the known region consists of a cylindrical

tube, then the Green's function can be computed in a straightforward manner

by the use of Fourier transforms and algebra; we carry out these computa-

tions in Appendix A.

If, however, we wish to reconstruct flaws that exist in the presence

of tube supports, as in Figure 3, or tube flaring, as in Figure 4, or

any other known irregularities, then we cannot hope to compute the

Green's function in a purely analytical manner. In this case t1e Green's

function satisfies an integral equation, which must be solved numerically.

We hardly consider this to be a very serious drawback, however, because

- so much of our modeling effort involves the numerical solution of integral

equations.

I The integral equation that is satisfied by the Green's function is

identical to (8), with the following changes: G is the Green's function
22

of the cylindrical tube, as if there were no irregularities (the sub-

scripts may be different, depending upon the location and type of known
irregularity), af(r',z') becomes the conductivity of the known irregular-

ity, and the integration is over the volume occupied by the irregularity,
!

and the right-hand side is replaced by G2 2 . Of course, we are still

I interested in only the •-component of the Green's function, and that is

why we can use the scalar integral equation, (8). If, in (8), there is

. no irregularity, then of= O, and the Green's function is identical to

that for the circular cylinder.

10
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An additional complication exists when the region is more irregular

than a cylinder, and that is the need to approximate the region in order

to apply the method of moments (or any other numerical method). In

Figure 5 we show two methods of approximating a curved surface with

splines of zero-order and first-order. Higher-order approximating func-

tions could also be used, but the two shown in Figure 5 are the easiest

to work with.

(b) Discretization of the Model: The Method of Moments [24]

The discretization of the problem via the method of moments is based

on the use of a mesh, as shown in Figure 2. In order to reduce (8) to an

algebraic system, we expand E2 (r,z) and (af/o0 - 1) in pulse functions

that are defined with respect to this mesh:

NH Nc

E(- (r,z) Z E) P aP.r~z ,(b

[ 1' 'z) j=l J

S~N
So~f

! jth pulse function, which is defined by

"• c(r,z) (r,z) in jth celi

= 0 , otherwise . (13)ij i The jth expansion coefficients, Ej., a, are the constant values of

L •the fields over the Jth cell.

Because E and (a a0 - 1) have identical expansions in non-overlapping
2 f' 0

pulse functions, it follows that their product does also:

C
i i Nc

E2 (r,z)(Of(r~z)/o0 - Z) E a P (r,z) (14)
2 f 0 J=l i J



__ I - - -: =-E0(r- -z)-(1__)
Upon substituting (12) and (14) into (8), we get

N N

Z=E P (r,z) + jwjA E 0E G. (r,z; r' ,z')r'dr'dz'j~ , E i= 3 3 22
Flaw

E E(r,z) (15)

Next, we take moments of (15); i.e., we multiply (15) by weighting

functions, Q (r,z), i 1, . . . , N , and integrate over the flaw. If
i c

% [the weighting functions are delta functions that are located at the center

of each cell, then the method is called point-matching; if they are the

same functions that were used in the expansions, (12), then the method is

called Galerkin's method. In any case, the result is the system of Nc

equations:

N

cE E C r,z)Q.(rz)rdrdz
j~l JFlaw

N N

+ Z E.OjW1% a rdrdz G2 2 (r,z; r',z')P (r',z')Q(r,z)r'dr'dz'
j=l Flaw Flaw

f7 E0 (rz)Qi(rz)rdrdz ' i=, . ,c (16)

Flaw

The vector-matrix version of (16) is:

(I + jWP oao)• = F (17)

where

A i Q (r,z)P (r,z)rdrdz (18)(a)

Flaw

12
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aGii = Q (r,z)rdrdz G(r,z;r'z'P (,z')r'dr'dz' (b)

Flaw Flaw

F i f E0 (r,z)Qi(r,z)rdrdz j , W

Flaw

Our analysis has been based on the method of point-matching, with
Qi(r,z) - 6(r - ri)6(z - z )/r, where (ri,zi) are the coordinates of theIi midpoint of the ith cell. Point-matching generally takes better advantage
of the singularity in the Green's function to produce a better conditioned
matrix (i.e., one more diagonally dominant) for inversion. The disadvan-
tage of point-matching is that the infinite integrals that define the

various matrix elements in G and F (see Appendix B) do not converge
as rapidly as with Galerkin's method, so one has to take more care in
their numerical evaluation. This has not turned out to be a problem,

however.

Thus, upon letting (z z be the lower and upper z-limits, re-_ + zj)
spectively, and (rj.r j the lower and upper r-limits, respectively, of

the jth cell, we get

+ +

GA G(r rdrdz 6 (19)(a)
Srj zr

•~ z+
S~rj zi

SGj = G G2(ripzi;r ',z)r'dr'dz' (b)

r. z.

F-E0 rlz) -JWPO ein 10 G2(r,,z;r',z')r'dr'dz' c

Exciting
Coil

where 6 1 1, if i J, and - 0, if i # j. Similarly, when (14) is) eij
substituted into (9), we get:

13
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p N r z

(E0  E )(r,z) iwUIaE J G12E(r,z;r',z')r'dr'-di' . (20) U

r. z U
V ~Now we define the kth probe coil as one having an inner radius,p

outer radus, olf-adz-coordinate, rright-hand z-coordinate,
+ i o~ ethn
and midpoint z-coordirzate of t~k. Then the EMF induced into the kth

probe coil is given by substituting (20) into (10):
t

EMF(k)=-JwjiOG0Zimn E aE rdr dz z( {z)~d~z

V This, too, can be put into vector-matrix form:

ERF T (TaE) ,(22)4

where

+ + +
P2 ?ýk z

j j

T ~-jwcr2iTn rdrdz I 1 (r,z;r',z')r'drtdz' 23
Pj 4 k cr -j

I ME is the transfer function from the jth cell to the kth coil. Note that

the number of coils, K, is not necessarily equal to the- number of cells,

N .Indeed, in applying the method of least-squares; to this-model, wec
take K -50, which produces 100 real and ithaginary -components of iENF,

and N. as 60. This yields an overdetermined-system,- which--is typical -of

least-squares problems. -

p ~In Appendix 3 we derive ex~pressions for the various etrmri

elements that have just been difined.I9~ 14



III. LEAST-SQUARES ALGORITHMS: LINPACK AND MINPACK

Now that we have a model system in hand, we shall say more about the

mathematical and numerical solutions of linear and nonlinear least-squares

problems. We rewrite (1) as the vector equation

-ef ) (24)[

We seek a least-squares solution, as defined below. Let

F(O)=f(a)-e . (25)

Upon introducing the usual squared-norm notation, we have

S~N
j2 N1/2

IF (a ) 112  I 1f(a ) - e1 12 = [ [f i( l . . . , a M) - ei ] .

Then the definition of a least-squares solution of (24) is: given
e = (e1 , . .. , e) find a = (01, a ." ,M) that minimizes I1Fi1 2 ;

. Ii.e., solve

VIP

We first consider the case where f is linear. Then write (24),

(25), and (27), respectively, as

"e A a (28)

r e - a (29)

e A (30)

If a is a solution of (30), then it is known that [25]

-~ 15



where the superscript, T, denotes the transpose of a matrix. Thus

=T=-* =T-
A Aa A e (32)

or I*= e, (33)

T lT3where A (ATA)IATis the pseudoinverse of A. While (33) characterizes

the mathematical solution of (30), we don't actually numerically compute

rA; for numerical solutions other methods are used.

A standard method of solving (30) is to use the QR-factorization of

the matrix A. Given that k is N x M (where N > M), there exists an

orthogonal matrix Q (of order N x N) such that

Q2TI (34)

where R is upper triangular. If we write Q =[Q, where Q, has M

columns, then

=i -Q-R . (35)

Thus if rank ( M) H, the columns of form an orthonormal basis

for the column space of A. Now if A - [AiA21 where Ai has k columns,

- and if R Lll where is kxk, theniR22
A, (36)

Q0

Hencc Q and R½l give a QR-factcrization of A,. This trur,.ated
Sdecomposition is important for matrices whose rank is less than full,

i.e., for which rank (A) < min(M,N).

SIi
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This orthogonal triangularization is generated by Householder trans-

formations [21, 25]. Once we have this triangularization, then the solu-

tion to (30) follows:

=T- =T- inT=-
Q r ffQ e - QTAG (37)

Q o, whereE = Te (38)

T = e2 (39)H2
Since Q is orthogonal, IITrII 2 = 11r11 2 . Thus 11r112 is minimized

when

el RC (40)

and when this is true

11112 11;2112 (41)I It is important to realize that when k rank(X) =min(M,N), then

the two subroutines DQRDC and DQRSL from LiNPACK [21] provide the method

for solving (30). DQRDC produces the QR decomposition of A with column

pivoting. This resulting matrix is passed to DQRSL for the solving

stage. DQRSL uses the k rank(A) columns to produce the desired least-I squares fit.

If, however, A is rank deficient (or near rank deficient), then we

need a truncated least-squares fit. This can be achieved by using the

Ssubroutine DQRST [21, page 9.11]. This subroutine allows for a user

supplied tolerance and calls DQRDC and DQRSL. Based on this tolerance,

I some of the columns of the output of DQRDC are zeroed. DQRSL then pro-
duces the truncated least-squares fit.

17
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We apply the linearized theory that has just been described to (22),

with the electric field column vector, E, replaced by its zeroth order

approximation, Eot so that the resulting equation becomes

F (k -- E ) (42)

When we generated a singular-value decomposition of T, we fotmd that

the ratio of the largest to smallest singular values was on the order of

1012. This ratio is a measure of the condition of the matrix. Thus,

while we were working with a highly ill-conditioned matrix, our model

produced very accurate results for inversion, as we will show in the next
section.

We have pointed out before that cur model equations, (8)-(.1), or

their discretized versions, (17)-(23), are in reality nonlinear. Thus,

we must use a nonlinear least-squares scheme. The subroutines L11DER and

LMSTR in MINPACK [221 fill this bill nicely. Both are based on the

Levenberg-Marquardt method, which we briefly describe below [26, 27].

Recall our problem: (25)-(27). If we linearize, we see that

+ 11 :: ''P(a) + P'(a)p1 2 ~(3
I

where F'V() is the Jacobian matrix. A standard way of minimizing i(p)

is by using a Gauss-Newtown method:

given: C-(k) ,( J(k) ),(•(k)) = , (y(k))

(-(k) -(k) _-((k))
solve: J(O ) = in a least-squares sense

-then let: (k+l) a(k) +_-(k)

This works well if 3(a) is full rank. In the rank deficient, or

nearly rank deficient case, however, modifications are required. It

should be noted that in practice rank deficiency arises often.

Since the linearization of (43) is not valid globally, we consider

a constrained linear least-squares problem:

S18



Dp 2n jP Dp 12 -(44)
p pJ ~=

where D is diagonal. The Levenberg-Marquardt method is based on the

fact [26] that if p ia a solution to (44), then p = p(X), for some

X > 0, where:

(T= + =XT=-(JJ+---p=-J

i p (45)

The way to solve for p is to recognize that (45) are the normal

equations for the linear least-squares problem

L1/2M1' (46)

The implementation of these facts is the basis of the nonlinear

least-squares subroutines in MINPACK.

In order to apply the nonlinear least-squares algorithm to our

discretized model, we must send to LMDER and LMSTR the nonlinear func-

i tion to be minimized, as well as the Jacobian. The Jacobian is obtained

U from (22) as

J kj E TkjEj, (47)

which is the matrix that multiplies the column vector . TherefOre,

S =, the steps to be followed in solving the nonlinear least-squares problem

I are:

" enter initial guess for a and solve (17) for E

- compute Jacobian from (47)

compute E oF from (22)
model

form FOa) - aMFo -El_mdel measured

call LMDER or IMSTR

Ai 19
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IV. EXAMPLES OF RECONSTRUCTION OF SIMULATED FLAWS

The theory of inversion involves two components, a theoretical model

that is based on a rigorous application of electromagnetic theory, and

numerical algorithms that effectively implement least-squares theory.

Each of these has been dealt with, and now we illustrate how the method

works for the reconstruction of computer simulated flaws.

f All numerical experiments were run in double precision on the PRIME
550-I1 and IBM 360 machines. The double precision data word on the PRIME

occupies 64 bits, of which 47 are the mantissa and 16 the exponent. The

effective precision is about 14 digits. The IBM double precision word

has a 56 bit mantissa, which allows an effective precision of about 17

digits. Precisions such as these are required for meaningful computa-

tions, because the condition number of the Jacobian matrix is phenomenal--
12

on the order of 101. Even with this large condition number, the compu-

tations produced excellent results; in the worst case the reconstructions
were exact to at least three places on the PRIME, and five places on the

IBM. This verifies that the algorithms in the LINPACK and NINPACK pack-

ages tend to work better in higher precision.

E ' The physical system that was modeled is a variation of the multi-

coil system chat has been described earlier, and is shown in Figure 6.

It consists of a fixed exciting coil and a single probe coil that can

be moved axially. This system is typical of a common flaw detectionI scheme. The mesh on which the discretization is defined is also shown.

It consists of six rows of ten cells, and spans the entire tube wall-

thickness. The starting position of the probe coil is at the left edge

of the mesh, and the final position is at the right edge. The probe

coil is stepped through fifty equal intervals between these limits,

thereby generating a total of 100 real and imaginary EMF values that are

= | used in the least-squares inversion.

The physical parameters of the model are typical of real systems.

- The inner radius of the tube is 0.)10", and the outer radius, 0.375".

The length of the mesh is 0.50" in the z-direction, thereby giving a

cell resolution of 0.05" by 0.011". The probe coil's inner radius is

0.05", outer radius, 0.100", and its length is 0.50", the same as the

20



mesh. The exciting coil is centered on the mesh in the z-direction

(neither of these last two items is a requirement of the inversion

method). The density of turns of the exciting coil is 2x106 turns/m,

which is comparable to that of 20 gauge copper wire. The probe coil

has an inner radius of 0.100", outer radius of 0.26", and a length of

0.250". Its turns density is 2x107 turns/m, which is comparable to 30

gauge copper wire. The tube conductivity is 3.5xl07, which is equal
to the conductivity of alumninum, and the freuqency of operation is
lkHz.

In Figure 7 we show a simulated flaw (the "original") at the top and

its reconstructed version at the bottom. The real (R) and imaginary (I)

parts of the perturbed EMF, as measur zd by the probe coil when it is

moved acorss the mesh, are shown in the middle of the figure. This EMF

curve is actually an interpolation based on the fifty probe coil positions.

In this figure, and the next two, we simulate the flaw by letting Cif = 0

at the flaw location, and of = C0 off of the flaw. Thus, according to

(12)(b), a. = -1 if the Jt-h cell lies on the flaw, and . = 0, otherwise.

Note, in Figure 7, that because the original flaw is placed sym-

metrically in the mesh, the EMF is symmetrical about the center of the

mesh, also. The reconstruction is clearly perfect (to at least three

significant digits), indicating that the least-squares inversion algo-

rithms work quite well in this model. We must be cireful to note, how-

ever, that in this report we have considered only original flaws that

are defined on the same mesh as that used for reconstruction; i.e., each

part of che flaw ia constant over a full cell of the reconstruction mesh.
We intend to consider the more general case, in which the flaw may be

defined on a different mesh than that used for reconstruction (say, one

with smaller cells, or cells that are displaced from the cells of the

reconstruction mesh). This will test the ability of the model to re-

solve, as well as invert, data.

To satisfy ourselves that the excellent results that were obtained

in Figure 7 were not due to symmetry, we considered the asymmetrical
Sflaws of Figures 8 and 9. Again, the reconstruction was perfect to at I

- least three signficicant digits. It should be noted from these three

= examples that the more concentrated the flaw, the greater is the peak

of the EMF curve.
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A crucial test of inversion in highly ill-conditioned systems has

to do with corrupted data. The question is, does the reconstruction

"follow" the corrupted data, or does the result lose all significant V

figures? In order to test our model's response to corrupted data, we

performed the following numerical experi.ment. We assigned to each cell

in the mesh a number between 0 and 1, chosen at random by using the

FORTRAN random number generator. Then the model EMF that is produced by

this "flaw" is computed by following the first three steps that are

listed below (47). This "true" data is then corrupted by adding to it

the same data multiplied by either 0.01, 0.10, or 0.20, and then using

this as the "measured" EMF (see the discussion following (47)). Figure

10 shows the results of this experiment. There we show the original

flaw, consisting of the sixty randomly chosen cell conductivities,
followed by the reconstructed flaw, simulated by the sixty values of

computed cell conductivities, for the case of 1%, 10%, and 20% corrupted

data.

Again, the results are excellent. We don't, of course, expect to

reconstruct the original flaw by using corrupted EMF data. We are

happy, though, to see that the reconstructed flaw "tracks" the original

flaw, in the sense that it departs by almost exactly 1%, 10%, or 20%

from the original. Such stability in the face of a very ill-conditioned

system attests to the excellence of the LI1PACK and MINPACK algorithms.

The same results that are shown in Figures 7-10, are obtained with

either the linear or nonlinear algorithms that are described in Section

III. The reason for this is that in (17) the term involving the matrix

G is much smaller than the first term, A. Thus, the solution of the

equation is E z E0, and when this is substituted into (22), or (47), we

see that the Jacobian matrix is constant, so that the nonlinear algo-

rithms may be replaced by the simpler linear ones.

V. COMMNTS AND CONCLUSIONS

In this report we have developed a model for eddy-current inversion

that is based on the application of rigorous electromagnetic theory and

numerical algorithms for least-squares. So far we have attet.pted only

[ i22
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to verify the inversion method for flaws that were defined on the same

K grid as that used for reconstruction. The results have been excellent,

and suggest that the method can be used as the basis fur the development

of an engineering prototype system. Before such a system can be ef-

fected, however, we believe that the following additional studies should

be carried out:

*study resolution of flaws that are defined on a

different grid than that used for reconstruction

K • carry out examples of reconstruction in the presence

of known irregularities

I determine computer hardware requirements

If determine computer software requirements

I idetermine relative advantages of multicoil, multi-

- frequency, and transient (time-domzin) systems

optimize exciting coil and probe configurations and

design.
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I Figure 1. Illustrating three systems problems: (a) the "direct"
I problem, (b) the "signal-detection" problem, and

Cc) the "inverse" system-identification problem.
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H i ORIGINAL FLAW

EMF POSITION OF

PROBE COIL

0.2

I

-0.4

-0.6

I

EID

RECONSTRUCTED FLAW
Figure 7. Illustrating a symmetrically placed flaw (top), tha real (R)

and imaginary (I) parts of the £MF induced into the probe
coil (center), and the reconstructed flaw (bottom). The flaw

I consist3 of the darkened cells. The reconstruction is exact
to the least three significant digits.
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[I

EMFPOSITION OF
EMF PROBE COIL

-0.2-

0.4- R

II -0.6

RECONSTRUCTED FLAW

Figure 8. Illustrating the reconstruction of an asymmetrically

placed flaw. The interpretation of the figure is the
I same as of Figure 7.

3 33

iI • 33
F•



ORIGINAL FLAW
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PROBE COIL
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m •L m ,, t i

iii'
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i'
I

RECONSTRUCTED FLAW

Figure 9. illustrating the reconstruction of another asymmetrically
Iplaced flaw.
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ii .1111/H ECONSTRUCTED
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(c)

Figure 10. Illustrating the reconstruction of random flaws with
perturbed EHF data: (1) 1% perturbation, (b) 10%
perturbation, (c) 23Z perturbation.
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APPENDIX A. CALCULATION OF THE GREEN'S FUNCTION

The interest of the cylinder is labeled region 1, the tube wall,

region 2, and the exterior to the cylinder, region 3. In each region

the magnetic permeability is P0 and the dielectric constant, £0" The
0 0

electrical conductivity of regions 1 and 3 is zero, whereas that for
region 2 is O. We use the notion

G. .(r,z;r',z') = field produced at (r,z) in region i.

due to a filamentary current loop at

(r',z') in region J, where i,j = 1,2,3.

Using this notation, the Green's function satisfies

- 2 6(r-r')6(z-z') -
V x V x G klll a (A-1)(a)

-- 2 -

V2x - k 2X1 =0 (b)

VxVxa k2 G 0 (c)
31 3 31

I 2ax 1 - klG12 =0 (A-2)(a)

Vx~ - k2- 6 (r-r')6(z-z') (b)
22 2G22 2irr'

2 32 k 3G32 0 (c)

S- 2-
VI3 -kG 0 (A-3)(a)-113 1G13
V x 2-
SxV xG 23 k 2G23 0 (b)

2- = 6(r-r')6(z-z') - (c)
kG 2 r V x V x k ' a

33 333 7r
i2! 2 2 2 2 2W 01 1 jlO

where k1,32  k2 = W U£0 , k2 = 0 jwile
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II

If we write G,= G ja, where the scalar GC is independent of •,
because the vector G is divergenceless, thun the vector differential

ij
operator on the left-hand side of these equations is replaced by the

scalar differential operator

a 2 G aG G

41. +il +, 1+ i (A-4)z2 r2 V r2

where k stands for either k or k2 .

The only parts of the Green's function that are required in the
model equations, (8)-(11), are G1 2 , G2 2 , and G2 1 ; but G2 1 (r',z';r,z) =

Gl2 (r,z;r',z') because P0 in each of the three regions (see [23] of

the main text). Hence, all we need be concerned with is (A-2), which A

we rewrite using (A-4):

2 2
12 12 1 12 12 2

+ +- - k G =0 (A-5)(a)
r+ + r r2  0G12

2 2•222 +2G22 iG22 G22 +2 6rr)(-'

9•z2 3r r2 r 9 r r 2 k2 22 =27rr'(b

2Ga2G32 + a2G32 + i 32 G32 2 =0 (c)
2 2 r Dr 2 0G32

Dz 3r r

We use Fourier transforms to solve (A-5). Thus,

Gi2 (rz;r',z') = J G(r,h;r')e-h(zz)dh , (A-6)

so that (k-5) becomes

2
12 1i2 2 2 2- jh~z-z,)

- k h e dh
J ~ ~~~~dr•2  I d -i Gi2+ (k• - h2)Gi 2 )e-J~-'d

d 2 r dr r 2 11

- |6(r-r') e-jh(z-z')dh , (A-7)

i2 (2n) r, -
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where we have used the completeness relation

- (- e-ih(z-z')dh
S(z Z') = , (A-8)

and 15 = 1, if i = 2, and = 0, otherwise.
Since (A-7) holds for all, z, z', we can equate integrands to get

the differential equation that is satisfied by the transformed variable:

2-d G dGi2 1 i2 1 2 2 2- _____'- (k.dr 2 h (k = r i2 12 (A-9)a r r (27r)'r'

let r be the inner radius of the cylinder and r 2 , the outer. Then
the boundary conditions that are to be satisfied by the Gi2 are:

(r +. ... n 1,2 (A-0)(a)

dG (r 3 G(r dG (r) rn2 n +n2 n n+1.2 n 'n+l,2(n)
dr r dr r n

[G 22Cr) G22(r+) d2 2(r'2 ) 1(c)

dd~~ W) rW) dd ) 6('
22+ 22___ 4- __ -- 2-2_ 22 -1dr + (d)

dr r dr r - -2r(d

Equations (A-I0)(a),(b) imply the ccntinuity of tangential electric
and magnetic field, respectively, across a surface that does not carry

magnetic or electric curr-nt singularities. Equation (A-10)(d), on the

other hand, implies that the tangential component of magnetic field

intensity suffers a discontinuity of amount -i/4irr' in crossing the

surface r = r', on which the filamentary current source resides. Alter-
natively, (A-10)'b),(d) can be obtained by integrating (A-9) an infini-

tesimal distance across the surfaces r = r., r r 2 or r = r', and then
invoking the continuity of electric field, as expressed in (A-10)(a),(c),

across these same surfaces.
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Because the source point, r r', is in region 2, we have the follow-

ing solutions of (A-9):

:12~~ ~ 2~(:),~ a 1k~h)/2 (A-11)(a)

• ; I2 =AJl(Ctor), r < ri , 0 (k h Al)a

G2 BH (a r) +,H < r<v, a (k - (b)

If (1) (2)C)
S22 (DR1  (a 1r) + EHl1 (ar), r'

S= (ar), r >2 (d)

where A-F are arbitrary constants that are chosen to satisfy the boundary

conditions (A-10).

We use the Bessel function J in region 1, because that region in-

cludes the z-axis, r = 0, and J is regular there. The Hankel function,
(2) and H(2)

H , is used in region 3, because that region extends to r 1H

I is regular there (that is H 2I represents an outgoing cylindrical wave

A1 at infinity).

The six constants, A-F, are determined by applying (A-10) to (A-I1),

with the result:

1(1)(2
AJI(caIr) BHR1  (a 1r ) + C2) (alrl) (A-12)(a)

a 0AJ0(a r1 iBHI) (a r) + a CH(2) (a r (b)
0 001 1 0 111 l0 ( 1 1) b

1 1

4

a c~' (H2 )(c (1C ) (2)E~~ c

BH (a r' + (air) 4rDH0  (a r + E (a r (d)

47~r
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D14R (air 2 )+EH i(• 2 ) r + 2E H (ar 2 ) C(a r (e)

a 1DR~ (ar) + at1EH 2 (cr) (alr 2) (f)

in arriving at the final form of these equations, we used the Bessel
(1) (2)

function identity dB /dz + B1/z = B09 where B stands for j, H H

These equations can be solved in a straightforward manner. and th

SI constants then substituted back into (A-il). The results are:

- t V1H~
1 (CL,r') + V Hi

l01
GI2(rh;r) = 2lr(ar) (A-13)(a)

(27) r (VIV4-V 2 V3 )

(2)I (1) (2)

I22(r harI [ 1  )(a I r')+V,,H Z(a rl)][V 3 R1  (a~r)+V4H, (alr)]

I -Jl 16r(VlV4 -V2 V3 ) '

-I "< r < r' (b)f

3 1j 1 -1

22 (r,h;r') (VV 4 -V2V3) '

r' < r <r 2  (c)
V H <O H ( r'

I - 32 (r,h;r') V3 H1•(• 1 r)+V4 H1•)(r () r)

(27r) r (VV-VV) 1 0 (d)

where

' V, lH•2)(Ctr2) )(•I2) (2) (2%
c a -0(ar r (cr a (a 0 r 2 )H (aLr 2 ) (A-14)(a)
IN 0)O 2 0002 0 2

Ic
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MIS
V -a H (OrI)Ho (ar + - H (aO Orl)H (trl ) (b)2 1 1 020 1 2 0 021 1 2

! v4 a- il(rl') l (ar) + aO0 J 0 (aO0rl)Hl (alrI) (c)

[ Throughout the calculations, liberal use is made of the Wronskian

relation

H•l(z)H( 2 )(z) - H( (Z)Hn2(z) = -j4/irz
n n

The final integral expressions for the Green's function are obtained

upon substituting (A-13) into (A-6):

fff

Gl(1zrH) 1 lHI (alr')+V2H I)(ai' I r -jh(z-z')

G(rz;r',z') 2Jl ( 0r)e dh (A-15)(a)
-1 14 23

Ir
S

2 2 (rz;r',z') =

Rkl7u (2) r")2(2)

(V1V4-V2V3)

-jh(z-z') (e- h -zdh, r,_< r < r' (b)
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G22 (rz-r,z') z

0V V Hr()+V4 2) (a r') W [VH (1 )(r)+VH 2) (air),

16T I -(V V4-V V3)

a- •jh(z-z')dh , r' < r _< r (c)

G (r,z; rz ) H (ar)eh(z-z')dh (d)

32 f ~(27r) r (V V -VV (cre

• I ~APPENDIX B. CALCUI.T!ON OF MATRIX ELEMENIS

SIn this appendix, we derive expressions fo'; the for~cing-function

vector, (19)(c), and the matrices, (19)(b), and (23).
In order to compute (19)(c), w-e start with the reciprocity relation

C21(r,z;rl,z') =G12 (r',zt;r,z) ,(B-1)•I21
where the last equality follows from (A-15)(a). We assume then that the

exciting coil occupies the region pe) < ( <e) < z < )e)

Then, when we substitute (B-1) into (19)(c), and interchange the order of
S • integration-, we get
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S-j -one-e

F°iwinF, 7Trl

00 (e)i • o• ejh (z_(e)snh/2 (e) (e)•

sen 0,p1 a o)
2

ha2 (VIV4 -V2 V3 )

ti • [V 1H(1 (a r ) + V2  (2)(ari)]dh , (B-2)

where L is the length and 4(e) the midpoint of the exciting coil, and
i i ise zg

z2
['• 1(z2'z) Jl(;)4dý (B-3)

if K z

Before computing (19)(b), we introduce the vector notation

(1) (2)+ a (2)
V 12 "i VlH + V21 V34 "'1 VA 41

In addition, we let r> be the larger of (rir'), where ri is the

radial midpoint of the ith cell, and r< the smaller. Using this notation

SI allows us to write (19)(b) concisely as

+ +

rj
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++

e dz

SD+r.

ea - ~ -z -e -jZf ') zI - z( 1 4- 2 3
[ 

Zj

six j~ Li1 jh

12 1 > 34 1 1r<~ 'dr' }dh(B4S~+

£ rj (VlV4-V2V3 )

In order to evaluate the inner incegral we must consider three

" cases: (i) < rl, (ii) r- ri., and (iii) r > r In (i), clearly

r< ri, r> r, and in (iii) r< r', r> r,. Hence, the
inner integral above can be immediately computed for these two cases:

r.
V i r 4r a drr

-r (VaV4-V2V3)

(V12 " R(ar,cNr.)) 
(v 3 44H 1 (ar 1))

(VlV4-V2V3 )
rj

I (12.H (1ri (V34"I(i') I

Ha, a I(ViV 4 -V2V3)
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The vector H is defined by

(1)(z (3-5) (a)

(z2,) ef~ I72)
23- (z z(b)

I r ~~~~~(V 12 -i(a r.))(V H(c34) (V'2 *H (a r')) (V34H(a 1 i 3 'r'+j 1 1 41 ±r'dx
f(VlV4-V 2 3 ) f(VJv 4-V2V3)

- -(V 1 '~(a r )) (-V ff(alr, 1c1r.)) + (V1  H(a ri,a r1 ) (v 64 1(alri))

a 2

Hence, when these results are substituted into (B-4), we get

0O

ii eh(z Z) sin(hA/2) (id

18-

f e -jh(z -z)j sin(h&/2)

87t e-j~ij snh/2 (iii)dh r~ > rj (B-6)
-OD
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I 4here (i), (ii), (iii) are the corresponding functions presented above

for the results of the radial integration, and A is the width of a cellI
in the z-direction. We point out that the mesh with which we are working
is regullar, in the sense that its ce'is are of constant width in the

r- rand z-directions.

The exnpression for 1'is also easily derived by substituting
TkjIL( (A-15)(a) into (23) and interchanging the orders of integration, with

0j hr1  (V1V4-V2V3)

Oh(cos[h(ý,-z.) costh(-z) +Fe+7j costh(ý-Zý)ilII h2

rik
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